

Image and Analyze your Arrays Colorimetric and Fluorescence versions

Compact & Versatile

The axiREADER is a compact and portable imager designed for imaging arrays of biomolecules. It is available as a fluorescence reader, for tagged molecules, or as a colorimetric reader, to view spots such as after treatment with a chromogenic substrate for example.

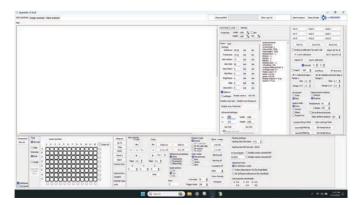
The reader can work with a 96-well plate, a 12 x 8 strip well plate, 25 x 75 mm slides, or any other substrates, such as iRiS chips, via custom adapters. Beyond imaging, the software can auto-find array spots, analyze them, and interpret test results using powerful algorithmic capabilities.

The power of multiplexing

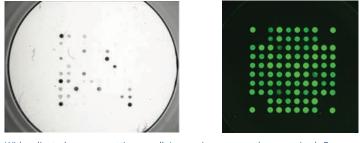
- Perform multiple assays in one well
- Ideal for multiplex ELISA and genotyping
- Save time, reagents, and precious samples Same functionality as confocal scanner at a fraction of the cost
 - Designed for routine use in diagnostics and biochemical analysis

The colorimetric reader images from above and therefore can read white or opaque plates / slides, as well as clear ones.

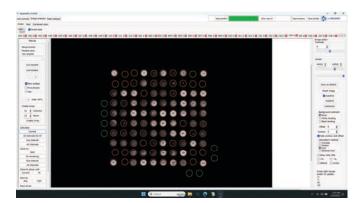
The fluorescence reader images from below and therefore clear bottom plates should be used. Opaque slides or other substrates, can be used by flipping them upside down.

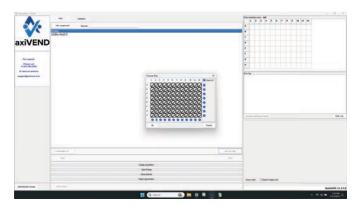


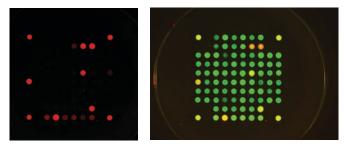
FUN FACT: The dual layer silicone surface of the iRiS chip enhances imaging for fluorescence based assays. In addition, the silicon surface allows for a wide range of functionalization chemistries to be utilized, for immobilization of your capture biomolecules.

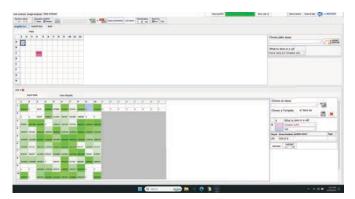

Microarray Analysis

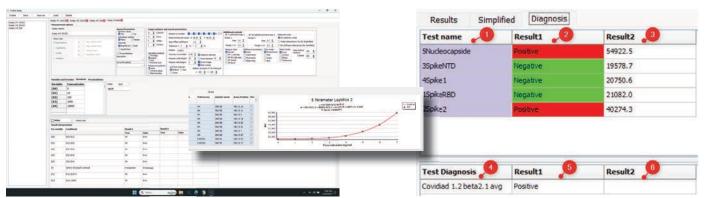
The readers image the array using a single picture from a high sensitivity low-noise camera. The optics do not move during a read. This approach makes the reader particularly robust and easy to transport. An automated stage moves the plate or slide to preprogrammed / customizable XYZ coordinates to capture images. While at a location, several images can be acquired using for example, different channels or exposure settings.


- You have the flexibility to read a full plate or slide, using a number of camera settings, and export TIFF files for external processing.
- You can use the built-in software to find the spots and calculate their intensities using a number of methods, and export as a csv.
- Finally, you can automate the analysis with powerful algorithms to analyze spot intensities, culmulating into a custom report with interpreted results.


The first step consists of setting up image acquisition parameters. Focus and camera settings are adjusted here. Plate position calibration for XY and auto-focus mode selection is usually done by an administrator. One can also manually select samples to be read, useful during assay development.


With adjusted camera settings, well / array images are then acquired. For multichannel fluorescence readers, one can specify the capture of several images per well location, using different settings, without moving the stage.


Spot finding uses a template of your array and a powerful AI model. The model is trained based on sample images from your assay. This results in robust spot finding performance.


Once an 'assay' is defined, the end-user can use this simple interface as the only screen. Select 'assay', select wells to read, and click 'start'. All steps defined by the assay are then executed, including image acquisition spot finding, area calculation, analysis, reporting, including images / data exports.

Up to 4 excitation wavelenghts can be used, and a total of 4 emission filters can be included during the assembly of the reader. The standard 2 channel configuration uses red/green channels.

Once the spots are found, a calculation is performed to quatify spot intensities, such as average, median, and sum of all pixels within, with associated statistics. Spot matching to array components is performed with the import of a GAL file, or manually.

With the calculated spot intensities, as AUC, one can then perform a thorough and accurate analysis. Spots can be defined as positive or negative controls, as well as calibrators. Algorithms can use intra-array spot values, as well as inter-array values (from different wells) to perfom results calculations. Calibration curves using data from different wells can be generated. This suite of powerful features enables the generation of interpreted results in a consise diagnostics report.

GENERAL SPECS (Common to both types)

Detection:	CMOS 3MP camera (FOV 7x7 mm)
Resolution:	6 um / pixel, 1280x1280 pixels
Exposure:	Controllable, up to 30 sec per well
Focus:	Manual, Auto
Image formats:	TIFF, PNG (16-bit)
Sample Import:	GAL, Excel
Speed:	~ 2 min per 96-well plate
Software:	Included, runs on 64-bit Windows 11

COLORIMETRIC

Light Source: Camera mounting: Substrate: FLUOROMETRIC Light Source: Camera mounting: Substrate: Standard laser (2): Std filters (bandwith): top and bottom white LED top, imaging downward opaque *or* transparent

bottom laser illumination bottom, imaging upward clear, *or* insert facing downward 520 & 638 nm 575 (25) & 688 (48) nm

Common Configurations:

Fluorophore	Excitation, nm	Emmision, nm
ALEXA 430	445	520
CY3	520	615
CY5	635	697
e e Vie	olet Green	Red
Fluorophore	Excitation, nm	Emmision, nm
ALEXA 405	405	438
CY3	520	615
CY5	635	697
Fluorophore	Excitation, nm	
ALEXA 405	405	438
	470	520
FITC/ALEXA488		

Blue Channel Options: 445, 460, or 470 nm Red Channel Options: 635 or 650 nm

Need different wavelengths? Ask us !

Available emission filters

nm	FWHM	Application	nm	FWHM	Application
435	48	-	561	21	-
438	28	-	562	45	<u></u>
440	46	Sirius Emission	572	33	SpectrumGold [™] Emission
447	65	DAPI Emission / BFP & GFP Emission	575	35	
448	25	-	578	22	Cy3.5 Emission
452	51	-	585	40	-
466	45		586	26	SpectrumOrange [™] Emission
472	35		591.5	49	Cy3 Emission / TRITC Emission
475	56		605	22	Qdot* 605 Emission
482.5	36	CFP Emission	607	42	GFP Emission / RFP Emission
494	25		615	26	Alexa Fluor* 594 Emission / Cy3 Emission
500	29	-	620	60	-
510	25	Cy2 Emission	623	30	Texas Red* Emission
510	89	FURA2 Emission	624	46	Texas Red Emission
512	30	Fluorescein Emission	625	25	Qdot* 625 Emission
520	41	GFP Emission	628	38	SpectrumRed [™] Emission
520	77	Alexa Fluor* 488 Emission / GFP Emission	631	28	
525	18	Qdot* 525 Emission	640	20	-
525	51	GPF/FITC Emission	640.5	81	mCherry Emission
527	22	SpectrumGreen [™] Emission	648	20	FITC Emission
530	62	Thiazole Orange Emission	655	24	Qdot* 655 Emission
534	25	-	655	47	-
534.5	48	FITC Emission	661	26	TO-PRO*-3 lodide Emission
540	56	FITC Emission	676	36	Cy5 Emission
543	27	YFP Emission	692	47	Cy5 Emission
549	21	Alexa Fluor® 532 Emission	697	91	Alexa Fluor® 680 Emission / Cy5.5™ Emission
550	100	Broadband Green Fluorescence	716	47	Cy5 Emission
560	32		785	71	Superbright780

Notes:

axiVEND microarrays LLC 350 E Crown Point Rd, Suite 1020 Winter Garden, FL 34787 United States

axivend.com info@axivend.com +1 833 294 8363

